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Abstract

CFD-based aeroelastic computations are performed to investigate the effect of nonlinear aerodynamics on transonic

LCO (Limit Cycle Oscillations) characteristics of a two-dimensional supercritical wing with the NLR 7301section. It
is found that the presentation of the viscous effects, including turbulence modeling, plays an important role on the

accurate prediction of shock and LCO; and a small initial perturbation appears to produce large amplitude LCO at
small mean pitch angle and plunge while a large amplitude initial perturbation produces small (or negligible)

amplitude LCO at larger mean values. Also addressed in the paper is the issues related to multiblock MPI (Message
Passing Interface) parallel computation.

Introduction

LCO has been a persistent problem on several current

fighter aircraft and is generally encountered with
external store configurations. Denegri [1] provided a

detailed description of the aircraft/store LCO
phenomenon. Norton [2] gave an excellent overview of

LCO of fighter aircraft carrying external stores and its
sensitivity to store carriage configuration and mass

properties.

LCO can be characterized as sustained periodic
oscillations which neither increase nor decrease in

amplitude over time for a given flight condition. Using
an s-domain unsteady aerodynamic model of the

aircraft and stores, Chen, Sarhaddi and Liu [3] have
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shown that wing/store LCO can be a post-flutter

phenomenon whenever the flutter mode contains low
unstable damping. This type of flutter mode is called a

"hump mode". Since the aircraft structure usually
contains structural nonlinearity such as friction

damping, this amplitude-dependent friction damping
can suppress the growth of amplitude, thus resulting in

a steady state oscillation. This is known as the
nonlinear structural damping (NSD) model of the

wing/store LCO. Although not thoroughly proven
through tests or numerical simulations, results of the

NSD show excellent correlation with flight test LCO
data of F-16 throughout subsonic and transonic Mach

numbers. On the other hand, other researchers, notably
Cuamingham and Meijer [4], believe that the wing/store

LCO is due largely to the transonic shock oscillation
and shock induced flow separation, called Transonic

Shock/Separation (TSS) model. Edwards has suggested
the TSS model and viscous effects are two major

factors that cause transonic LCO for wings. He also
has studied the shock buffet phenomenon in addition to
transonic LCO [5]. It should be noted that, however,
there is no conflict in the NSD model and the TSS
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modelin thatbothphysicaleffectsmaycontributeto
LCO.

Recentrenewedinterestin LCOis perhapsmotivated
bytheneedto furtherunderstandthephysicsof LCO
and the currentadventof CFD methodologyin
aeroelasticity.Therearetwopotentialcomputational
methodsforLCOprediction/investigation:theCFL3D

code (version 6) [6-8] developed and supported by
NASA/Langley and the POD/ROM EigenMode
approach [9] originated by Dowell and Hall of Duke

University. The former is a conventional time-domain
CFD method whereas the latter a frequency-domain

CFD method, using aerodynamic eigenmodes.

order central differencing. There are two types of time
discretization available in the code. The first-order

backward time differencing is used for steady
calculation while the second-order backward time

differencing with _-TS subiterations is used for static

and dynamic aeroelastic calculation. Furthermore, grid
sequencing for steady state and multigrid and local

pseudo-time stepping for time marching solutions are

employed. Also available in the code are many
turbulence models, although here only the Spalart-
Allmaras model [16] and Baldwin-Lomax model [17]

with the Degani-Schiff modification have been used. A
detailed description of the methodology of the code can

be found in [6].

The present study plans to use a CFD time-marching
method, CFL3D v6, to numerically investigate

transonic LCO of a supercritical airfoil under a
plunging/pitching spring-mounting system [10-12]. It is

reasonable to start from investigating a two-
dimensional LCO case in order to better understand the

physics of LCO. However, because of the complexity
of a two-dimensional LCO experimental test, there is

few experimental data available for comparison.
According to our best knowledge, the experimental

work performed by Schewe et. al. [10-12] is perhaps
the only two-dimensional LCO experimental test
available in documents. Those test data were

immediately used by Platzer et. al. to validate their

thin-layer Navier-Stokes aeroelastic solver [13-14].
While the emphasis of [13-14] was on the predictive

capability of the thin-layer Navier-Stokes aeroelastic
solver, our emphasis here is to investigate the effect of

nonlinear aerodynamics on transonic LCO of the
supercritical airfoil, such as the impact of the viscous

terms, different turbulence modeling, and the initial
disturbances. Also addressed in the paper is the issues

related to multiblock MPI parallel aeroelastic
computation.

One of the important features of the CFL3D code is its
capability of solving multiple zone grids with one-to-

one connectivity. Spatial accuracy is maintained at zone
boundaries, although subiterative updating of boundary

information is required. Coarse-grained parallelization

using the MPI protocol can be utilized in multiblock
computations by solving one or more blocks per
processor. When there are more blocks than processors,

optimal performance is achieved by allocating an equal
number of blocks to each processor. As a result, the

time required for a CFD-based aeroelastic computation
can be dramatically reduced. In this paper, both single

and multiblock MPI parallel aeroelastic computations
near the onset of flutter LCO are compared with

experiment and with other computations. Figure 1
shows a C-type grid with 273 x 93 mesh points around

the NLR 7301 airfoil that has been divided into eight
69x47 blocks. This and a single block version of this

grid are used in the computations to follow.

Numerical Methodology

The computer code used in this study is CFL3D v6,

which solves the three-dimensional thin-layer Reynolds
averaged Navier-Stokes equations with an upwind finite

volume formulation [6]. A two-dimensional problem
can be calculated by using two identical grid planes,

created by duplicating the two-dimensional grid.

The code uses formally third-order upwind-biased
spatial differencing for the inviscid terms with flux

limiting in the presence of shocks. Either flux-
difference splitting or flux-vector splitting is available.

The flux-difference splitting method of Roe [15] is
employed in the present computations to obtain fluxes
at cell faces. Viscous terms are discretized with second-

Figure 1 Multiblock C-type grid around NLR 7301

airfoil (eight 69x47 blocks)

Accordingly the mesh deformation scheme in [7] is

modified to fit multiblock grids. In [7], the mesh
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deformation uses a modified spring analogy with solid

body translation/rotation of the fluid mesh near solid
surfaces. Initialization of the grid deformation at each

step is performed using a TFI (Transfinite
Interpolation) step. The mesh interior is then smoothed

and grid orientation near boundaries is preserved using
the modified spring analogy. In the present

implementation, the subgrid based TFI scheme of [18]
has been employed for initialization at each time step.

That scheme uses subgrids consisting of "slave
vertices" to move both block boundaries and interiors.

In some instances, in order to achieve an optimal
division of grid points, it is necessary to place flow

field block boundaries near a moving solid surface. An
example of this is shown in Figure 1. The multiblock

boundary and interior movement scheme allows the
user to place block boundaries near surfaces as

necessary for optimal parallelization. Boundaries
interior to the fluid domain near a surface respond to

the local surface motion. As the airfoil moves, block
boundaries move to maintain integrity of block

interfaces and the airfoil surface. User controlled input
makes it possible to update the mesh using this

subgrid/TFI-based scheme alone or to update with an
initialization using this scheme plus additional

smoothing steps. These added smoothing steps, the
number of which can be defined by the user, employ

the modified spring analogy scheme [7]. In the current
implementation the spring analogy scheme updating the
mesh interior is now written in delta formulation so that

the relative orientation of the original grid is retained.

The solid body rotation/translation of the fluid grid is
also now performed near both solid surface and block
fluid boundaries.

The time-marching simulation of the aeroelastic
responses is obtained using the state transition matrix
solution from t to t+At of the state variable

representation of the decoupled modal equations [19-

20]. The state transition matrix based scheme is optimal
in the sense that it is derived from an exact solution of

the free response of the modal equations. The actual
scheme uses predictor/corrector steps. The predictor

step marches the structure using the solution of the
modal equations at the step n to get the surface

deflection at the time step n+l. This provides the
surface shape for a recomputation of the fluid mesh and
the fluid domain solution at n+l. After a solution of the

fluid domain involving multiple subiterations, the

corrector step then solves the modal equations at the
time step n+l using the averaged generalized forces at
n and n+l.

Because the CFD and CSM meshes usually do not
match at the interface, CFD/CSM coupling requires a

surface spline interpolation between the two domains.

The interpolation of CSM mode shapes to CFD surface

grid points is done as a preprocessing step. Modal
deflections at all CFD surface grids are first generated.

Modal data at these points are then segmented based on
the splitting of the flow field blocks. Mode shape

displacements located at CFD surface grid points of
each segment are used in the integration of the

generalized modal forces and in the computation of the
deflection of the deformed surface. The final surface

deformation at each time step is a linear superposition
of all the modal deflections.

""_"-.. I _ L(t) th(t) NLR 7301 Airfoil

_ :!i!!_ ........

v
Figure 2 Two-degree-of-freedom dynamic model

The following is an account of our theoretical modeling

of Schewe's experiment on transonic flutter of a two-
dimensional supercritical wing with an NLR7301 airfoil

section [10-12]. Figure 2 depicts a simplified model of
the two-degree-of-freedom test set-up. The two-

dimensional wing has a chord length of 0.3 m (c - 0.3
m) and a span of 1 m (b - 1 m). The pitching spring and

the plunging spring are attached to the same c/4
position. The corresponding two-degree-of-freedom

equation of motion of the set-up reads

I mn -s ILl i D n 0 I h
L-s ic/4 "1 .. i -iL j L ° D _"

I Kh 0 I hl _ I L(t)
L o K_)4J-_M(t)

(1)

where m h is the total mass (m h - 26.64 kg), Ic/4 is

the mass moment of inertia about c/4 (Ic/4 -- 0.086 kg-

m2), s is the static unbalance (s = 0.378 kg-m), D h

and D are the damping factors of the plunging motion

(h) and the pitching motion (e) respectively (D h -

82.9 kg/s and D = 0.197 kg-m2/(rad-s)), K h and K

are the stiffness of the plunging spring and the pitching

spring respectively (K h = 1.21 x 10 6 N/m and K =

6.68 x 103 N-m/rad), and L(t) and M(t) are the

aerodynamic lift and moment respectively in Newtons.
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The aeroelasticequationsand the CFD grid are
maintainedindimensionalform.Toperformthetime-
marchingCFDcomputationin CFL3Dv6.0,it is
necessaryto convertEq.(1) intomodalcoordinates,
i.e.:

The criterionusedin [13-14]wasto matchthe
computedto the measuredtime-averagedsurface
pressuredistribution.

Time-AveragedSurface Pressure Distribution

g ,

)1_' I:j I_ I/q. (2)

where q is the modal coordinate and , is the modal
matrix of the undamped structure. For this numerical

example we have

__ i - 0.1735 0.1004
L 0.9277 3.403_ (3)

Substituting Eq. (2) into Eq. (1) and pre-multiplying the
T

resulting equation by, yields

12,ha h 0 16h2 0

I/I _/j.a L 0 2, . _O'al 2 _q._- L 0 ,
(4)

where _ h and _ are the undamped natural

frequencies of the plunging and pitching motions

respectively (_ h -- 205.4 rad/s and _ - 299.5 rad/s),

" h and - are the plunging and pitching damping

ratios respectively (- h -- 0.00648 and - - 0.00474).

Note that the off-diagonal terms in the damping matrix

are assumed to be zero for simplicity.

Results and Discussions

The simulated case here is the measurement No.77

documented in [12]. As mentioned before, the

experimental model was a two-dimensional
supercritical wing with NLR7301 section. The chord

length of the wing was 0.3 m and the angle of attack

was 1.28 . The experimental conditions were the free-
stream Mach number of 0.768 and the Reynolds

number of 1.727, 106 based on the chord length. A

transonic LCO in two-degrees-of-freedom was found at
the dynamic pressure of 0.126 bar. The corresponding

free-stream velocity was 254.7 m/s. The total pressure
was 0.45 bar.

First, an Euler computation is performed on a C-type

grid with 293x61 points. The best agreement with the

experimental data is at M-0.734 and _ --0.25 .
However, even for this corrected Mach number and the

corrected angle of attack, the predicted shock strength

is stronger than the experimental result and the location
of the shock is behind the measured one, as shown in

Figure 3. We have searched all Mach numbers and
angles of attack. It seems impossible to match both the

strength and location of the shock with Euler
computation. Then two viscous computations with

Baldwin-Lomax turbulence model and Spalart-
Allmaras turbulence model are performed on a C-type

grid with 293x93 points. The corrected Mach number is
found to be 0.748 for both models while the corrected

angle of attack is -0.02 for the Baldwin-Lomax model

and 0.15 for the Spalart-Allmaras model. Figure 3
indicates that both viscous results have a closer

agreement with the experimental data, especially for
shock strength and location, clearly showing that

viscous effects are important for the accurate prediction
of the shock.

-1.5 -

-1

-0.5

Cp o

0.5

1 [] Test ]

....... Euler I

B-L I7 IS_A ,
1.5 0 0.2

['-_

0.4 0.6 0.8 1
x/c

Figure 3 Time-averaged surface pressure

distribution (Aerodynamics only)

As shown in [13-14], because of the relatively large

chord length of the airfoil with respect to the wind
tunnel test section (1 m x 1 m), both the freestream

Mach number and the angle of attack need to be
corrected to take into account wind tunnel wall effects.

The above computed results are obtained from steady

CFD analyses of a rigid two-dimensional wing surface.
With taking into account the effects of elastic

responses, the corrected angle of attack becomes -0.1

for Euler computation, 0.15 for the Baldwin-Lomax
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model,and0.32 fortheSpalart-Allmarasmodel.The
correctedMachnumberdoesnotchangeforbothEuler
computationandtheBaldwin-Lomaxmodelbutshifts
to 0.75 for the Spalart-Allmarasmodel.These
parametersare used in the followingdynamic
aeroelasticcomputations.Again,asshowninFigure4,
theresultfrom Eulercomputationoverpredictsthe
shockstrength.The matchbetweenthe computed
pressuresof theviscoussolutionsandexperimentis
slightlylessneartheshock.

-1.5 r

!
-1 L " .

Cp0-0.5 _'-[]-- ":'_" _ "-- "__\ '\

0.5

1 [] Test ]

-....... EulerJ

.... _-AB'L /1.50 I I I I O" _ _ _ _ I _ _ _ _ I _ _ _ _ I _ _ _ _10.4 0.6 0.8 1

x/c

Figure 4 Time-averaged surface pressure
distribution (static aeroelastic computation)

Performance and Time Step Convergence

The static aeroelastic case is used to compare run times
between the single and 8 block/MPI parallel

computations. Starting from a steady state a time-
accurate aeroelastic solution is marched for 800 time

steps at 5 multigrid subiterations each. The Spalart-
Allmaras turbulence model is used in each case.

Table 1. Cost/Performance

Grid/comp. TFI Spr. Anal. CPU

type Smoothing Time/
Processor

(seconds)

1 block/seq yes yes 8800

8 block/seq yes yes 5430

8 block/MPI yes yes 690

8 block/MPI yes no 680
8 block/MPI; no no 610

also without aeroelasticity

Table 2 shows solution behavior for the single block
grid for successive time step sizes. These are

computed at M_-0.753, c_-0.6 and a dynamic pressure
of 0.126 bar, using the Spalart-Allmaras model.

Initialization is accomplished with a static aeroelastic
solution, followed by an initial perturbation of the

dynamic simulation of -.00114 in the velocity of the
second mode. The time step sizes give 80, 250, and 800

time steps per pitch/plunge cycle. Nine subiterations per
time step are used. Columns two and three are half

amplitudes of the fully developed LCO plunge and
pitch, while columns four and five are the plunge/pitch

frequencies. Frequencies and amplitudes are computed
based on a sampling of the last 8-10 cycles of motion;

from this sampling the data appears to be nearly
converged at the smallest time step. At the largest time

step, even after 100 cycles, the amplitude slowly
continued to grow while at the two smaller time steps

the amplitude fully converged to LCO. In all of the
remaining dynamic computations, the smallest time

step size with nine multigrid subiterations is used.

Table 2. Time step convergence, 1 block grid

At

0.128

0.040

0.0125

_(m) a_(Deg.) c%(Hz) c%(Hz)

.0112 3.72 34.5 34.5

.00917 3.24 34.3 34.3

.00899 3.17 34.3 34.3

Table 1 gives performance data for the various grids,

nm modes, and code configurations. The first two rows
in the table represent sequential computation of the 1

and 8 block versions of the grid. The 8-block grid takes
28% less CPU time than the 1-block grid, apparently

due to better caching of the smaller sized blocks. The
parallel computation with 8 processors runs 7.8 times

faster than the same nm sequentially. The last two rows
present the computational effort required for the spring

analogy smoothing step and the combined TFI and
aeroelasticity. Three iterations of the spring analogy

scheme add about 1.5% computing time to the solution.
The TFI grid movement and the aeroelastic

computation add about 10% to the run time.

The speed increase offered by computing in parallel is

appealing. There are trade offs of course when using
coarse grain parallelization. Depending on the block

splitting and problem, the multiblock computations can
require substantially more subiterations. This fact is

most evident in the problem at hand. Figures 5 and 6
show a comparison between single block and

multiblock limit cycle plunge and pitch. As an aside, it
must be stated that after several hundred cycles the

amplitude and frequency of the multiblock pitch and
plunge had settled out and converged to values virtually

identical to that of the single block grid (ah- 0.00887

m, a_- 3.13 , %- c%- 34.3 Hz). This would not be the
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case if the multiblock aeroelastic coupling and
integration were not consistent with that of the single
block configuration. Yet as shown in figures 5 and 6,

the early evolution of the multiblock LCO is much
different than that of the single block. With these results

casting some doubt on the convergence of the
multiblock CFD for this LCO problem, the final

computations are completed with the single block grid.

h (m) 0

towards LCO. The effect of viscosity is to limit the
amplitude of the flutter LCO. This is made clear by

figures 5 and 6 and by figures 9 and 10. Figures 9 and
10 present dynamic plunge/pitch responses to a small
perturbation (-.00114 in the velocity of the second

mode) using the Baldwin-Lomax and the Spalart-
Allmaras models. At the time of writing, the Spalart-

Allmaras simulation of Figures 9-10 had not reached a

limit cycle whereas the Baldwin-Lomax reached large
amplitude limit cycle quite rapidly. Plunge and pitch

amplitudes of the B-L result are around 0.004 m and 2

respectively. It is clear that the turbulence model
significantly alters the nature of the solution. The S-A

results in each of the cases shown in figures 9-10 and
figures 5-6 appear to be approaching a fixed point LCO

while the B-L results of figures 9-10 are LCO but
chaotic in nature.

-0.02.5 1.75 2 2.25 2.5

t(s)

Figure 5 Plunge vs. time (N-S, small perturbation,

MD = 0.753, a = 0.6 °)

0.04

0.03

10

2; _ Irlfl _l_llllf!/Iptllllll_'LIl!

12

0.02

0.01

h (m) o

-0.01

-0.02

-0.03

-0.04 i i i i I i i i i I i i i i I
0.4 0.8 1.2

t (s)

Figure 7 Plunge vs. time (Euler, small perturbation,

MD = 0.734, a = -0.1 °)

(Deg.)0

-2 - lO

-4-- 8
6

-6
8 block 4

-8 -- 1 block 2

-lq 5 , , , o1.75 2 2.25 2.5

t(s) -2
.4

Figure 6 Pitch vs. time (N-S, small perturbation, -6

MD = 0.753, a = 0.6 °) -8

-10 0

Effect of Viscosity and Turbulence Model

Figures 7 and 8 suggest that without the viscous terms,

the predicted plunge and pitch modes appear never

i i i i I i i i i I i i i i I
0.4 0.8 1.2

t (s)

Figure 8 Pitch vs. time (Euler, small perturbation,

MD = 0.734, a = -0.1 °)
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0.015_

0.01 r

0.005_

h (m) 0
t'

-0.005 [_

-0.01

-0.015

-0.021

Figure 9

10

2

(Deg.)0

-2

-- S-A
B-L

I I I I I I I I I I

1.5 2

t(s)

Plunge vs. time (N-S, small perturbation,

MD = 0.750, •= 0.32 ° (S-A),

MD = 0.748, •= 0.15 ° (B-L))

1.5 2

t(s)

response to the small perturbations both yielded mean
plunge and pitch very near their static equilibrium

positions. In response to the large perturbation, both the
amplitude and mean plunge and pitch had offset
significantly. Mean plunge had offset to values of

0.004 m (B-L) and 0.003 m (S-A). Mean pitch angles
had offset to values of 3 degrees (B-L) and 1.9 degrees

(S-A). Amplitudes of both turbulence model

simulations are much smaller in response to the large
disturbance and both show evidence of continuing
chaos. The amplitudes of plunge are around 0.002 m

(B-L) and 0.001 m (S-A). Amplitudes of pitch are
around 1 degree (B-L) and 0.2 degree (S-A).

0.02

0.015

0.01

0.005 NV_.

h (m) 0

-0.005

-0.01

-0.015

-0.02 , , , '115 .... _ ' '
t(s)

10

8

6

4

2

0

(Deg.) -2
4

-6

-8

-10 .... 1!5 .... _ '
t(s)

Figure 11 Plunge and pitch vs. time (B-L, large

perturbation, MD = 0.748, • = 0.15 °)

0.02

0.015

0.01

0.005

h (m) o
-0.005

-0.01

-0.015

-o.o2 4 .... 1!5
t(s)

Figure 10 Pitch vs. time (N-S, small perturbation,

MD = 0.750, •= 0.32 ° (S-A),

MD = 0.748, •= 0.15 ° (B-L))

Effect of Perturbation Size

The effect of initial perturbation size is studied by
repeating earlier simulations with both turbulence

models, but with a large initial perturbation (-.114 in
the velocity of the second mode). Results are shown in

figures 11 and 12. After the expected very large
transients passed, the solutions using the two turbulence

models appear to have reached LCO solutions. In

10

8

6

4

2

0

(Deg.) -2
-4

-6

-8

-10 .... 115

t(s)

Figure 12 Plunge and pitch vs. time (S-A, large

perturbation, MD = 0.750, • = 0.32 °)
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The plunge and pitch amplitudes computed here with
the single and multiblock grids, due to small
perturbation, are generally in the range of those

computed elsewhere. In particular, the presently
computed pitch amplitude due to the S-A model (aD-

3.17 degrees) agrees very well with other results, while
the plunge amplitude appears to be much lower (ah -

0.009 m computed here). [13] These pitch amplitudes

are much larger than the pitch amplitudes of the
experiment. (.2-.4 degrees) The mean pitch angle at .7
degree computed here compares with a mean angle of

1.28 degrees in the experiment.

The amplitudes of responses due to the large
perturbation actually are much closer to those of

experiment. The pitch amplitude for the S-A model
(around .2 degrees) and mean pitch (around 2 degrees)

agrees quite well with experiment. It must be cautioned
that the data under discussion (i.e. of figure 12) may not

have reached LCO, and may in fact be very slowly

diminishing in amplitude. What can be said is that the
small initial perturbation produced large amplitude
LCO at small mean pitch angle and plunge while a

large amplitude initial perturbation produced small (or
negligible) amplitudes at larger mean values. Future

computations with intermediate values of perturbation
may produce somewhat larger amplitude (than the

small or negligible) and lower mean pitch (than the
large mean values) that produce a better match with

experiment.

A final comment about the B-L results must be made.
The chaotic nature of the B-L results must be taken
with a certain amount of caution. To what extent the

chaotic nature of the LCO is due to numerical as

opposed to physically based reasons is not certain.
What is remarkable is that both turbulence models

produce a similar reduction in LCO amplitudes as a
result of the large initial disturbance.

Conclusions

Viscous effects are found very important for the

prediction of both shock and LCO. Special attention
should be paid to the numerical representation of

viscous effects, including turbulence modeling. A small
initial perturbation appears to produce large amplitude

LCO at small mean pitch angle and plunge while a
large amplitude initial perturbation produces small (or

negligible) amplitude LCO at larger mean values.
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